53 research outputs found

    The origin and rise of complex life:progress requires interdisciplinary integration and hypothesis testing

    Get PDF
    Understanding of the triggers and timing of the rise of complex life ca 2100 to 720 million years ago has expanded dramatically in recent years. This theme issue brings together diverse and novel geochemical and palaeontological data presented as part of the Royal Society ‘The origin and rise of complex life: integrating models, geochemical and palaeontological data’ discussion meeting held in September 2019. The individual papers offer prescient insights from multiple disciplines. Here we summarize their contribution towards the goal of the meeting; to create testable hypotheses for the differing roles of changing climate, oceanic redox, nutrient availability, and ecosystem feedbacks across this profound, but enigmatic, transitional period

    Forecasting the underlying potential governing the time series of a dynamical system

    Get PDF
    Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.We introduce a technique of time series analysis, potential forecasting, which is based on dynamical propagation of the probability density of time series. We employ polynomial coefficients of the orthogonal approximation of the empirical probability distribution and extrapolate them in order to forecast the future probability distribution of data. The method is tested on artificial data, used for hindcasting observed climate data, and then applied to forecast Arctic sea-ice time series. The proposed methodology completes a framework for ‘potential analysis’ of tipping points which altogether serves anticipating, detecting and forecasting nonlinear changes including bifurcations using several independent techniques of time series analysis. Although being applied to climatological series in the present paper, the method is very general and can be used to forecast dynamics in time series of any origin.NERCAXA Research FundEuropean Commissio

    Committed Global Warming Risks Triggering Multiple Climate Tipping Points

    Get PDF
    Many scenarios for limiting global warming to 1.5°C assume planetary-scale carbon dioxide removal sufficient to exceed anthropogenic emissions, resulting in radiative forcing falling and temperatures stabilizing. However, such removal technology may prove unfeasible for technical, environmental, political, or economic reasons, resulting in continuing greenhouse gas emissions from hard-to-mitigate sectors. This may lead to constant concentration scenarios, where net anthropogenic emissions remain non-zero but small, and are roughly balanced by natural carbon sinks. Such a situation would keep atmospheric radiative forcing roughly constant. Fixed radiative forcing creates an equilibrium “committed” warming, captured in the concept of “equilibrium climate sensitivity.” This scenario is rarely analyzed as a potential extension to transient climate scenarios. Here, we aim to understand the planetary response to such fixed concentration commitments, with an emphasis on assessing the resulting likelihood of exceeding temperature thresholds that trigger climate tipping points. We explore transients followed by respective equilibrium committed warming initiated under low to high emission scenarios. We find that the likelihood of crossing the 1.5°C threshold and the 2.0°C threshold is 83% and 55%, respectively, if today's radiative forcing is maintained until achieving equilibrium global warming. Under the scenario that best matches current national commitments (RCP4.5), we estimate that in the transient stage, two tipping points will be crossed. If radiative forcing is then held fixed after the year 2100, a further six tipping point thresholds are crossed. Achieving a trajectory similar to RCP2.6 requires reaching net-zero emissions rapidly, which would greatly reduce the likelihood of tipping events

    Reconciling safe planetary targets and planetary justice: Why should social scientists engage with planetary targets?

    Get PDF
    As human activity threatens to make the planet unsafe for humanity and other life forms, scholars are identifying planetary targets set at a safe distance from biophysical thresholds beyond which critical Earth systems may collapse. Yet despite the profound implications that both meeting and transgressing such targets may have for human wellbeing, including the potential for negative trade-offs, there is limited social science analysis that systematically considers the justice dimensions of such targets. Here we assess a range of views on planetary justice and present three arguments associated with why social scientists should engage with the scholarship on safe targets. We argue that complementing safe targets with just targets offers a fruitful approach for considering synergies and trade-offs between environmental and social aspirations and can inform inclusive deliberation on these important issues

    Investigating the topology of interacting networks - Theory and application to coupled climate subnetworks

    Full text link
    Network theory provides various tools for investigating the structural or functional topology of many complex systems found in nature, technology and society. Nevertheless, it has recently been realised that a considerable number of systems of interest should be treated, more appropriately, as interacting networks or networks of networks. Here we introduce a novel graph-theoretical framework for studying the interaction structure between subnetworks embedded within a complex network of networks. This framework allows us to quantify the structural role of single vertices or whole subnetworks with respect to the interaction of a pair of subnetworks on local, mesoscopic and global topological scales. Climate networks have recently been shown to be a powerful tool for the analysis of climatological data. Applying the general framework for studying interacting networks, we introduce coupled climate subnetworks to represent and investigate the topology of statistical relationships between the fields of distinct climatological variables. Using coupled climate subnetworks to investigate the terrestrial atmosphere's three-dimensional geopotential height field uncovers known as well as interesting novel features of the atmosphere's vertical stratification and general circulation. Specifically, the new measure "cross-betweenness" identifies regions which are particularly important for mediating vertical wind field interactions. The promising results obtained by following the coupled climate subnetwork approach present a first step towards an improved understanding of the Earth system and its complex interacting components from a network perspective

    Earth system justice needed to identify and live within Earth system boundaries

    Get PDF
    Living within planetary limits requires attention to justice as biophysical boundaries are not inherently just. Through collaboration between natural and social scientists, the Earth Commission defines and operationalizes Earth system justice to ensure that boundaries reduce harm, increase well-being, and reflect substantive and procedural justice. Such stringent boundaries may also affect ‘just access’ to food, water, energy and infrastructure. We show how boundaries may need to be adjusted to reduce harm and increase access, and challenge inequality to ensure a safe and just future for people, other species and the planet. Earth system justice may enable living justly within boundaries
    • 

    corecore